Search results

Search for "solar fuels" in Full Text gives 4 result(s) in Beilstein Journal of Nanotechnology.

Nanoporous water oxidation electrodes with a low loading of laser-deposited Ru/C exhibit enhanced corrosion stability

  • Sandra Haschke,
  • Dmitrii Pankin,
  • Vladimir Mikhailovskii,
  • Maïssa K. S. Barr,
  • Adriana Both-Engel,
  • Alina Manshina and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 157–167, doi:10.3762/bjnano.10.15

Graphical Abstract
  • highest abundance on the global scale. Solar energy application on a large scale, however, necessitates its storage [1][2][3][4]. Here, nature provides the blueprint for the production of solar fuels by rearranging the chemical bonds of water to dihydrogen and dioxygen [1][5]. For the realization of
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2019

Localized photodeposition of catalysts using nanophotonic resonances in silicon photocathodes

  • Evgenia Kontoleta,
  • Sven H. C. Askes,
  • Lai-Hung Lai and
  • Erik C. Garnett

Beilstein J. Nanotechnol. 2018, 9, 2097–2105, doi:10.3762/bjnano.9.198

Graphical Abstract
  • promising for the design of lithography-free and efficient hierarchical nanostructures for the generation of solar fuels. Keywords: catalysts; nanomaterials; nanophotonics; photodeposition; solar fuels; Introduction The relentless rise of CO2 levels in the atmosphere as well as the growth of the world
  • separation participate in chemical reactions in the electrolyte to make fuels. One example is water splitting for H2 generation [5][6]. Carefully designed photo-electrodes are necessary for low cost and high efficiency, which are both needed to make solar fuels competitive with fossil fuels as an energy
PDF
Album
Supp Info
Full Research Paper
Published 03 Aug 2018

Computational exploration of two-dimensional silicon diarsenide and germanium arsenide for photovoltaic applications

  • Sri Kasi Matta,
  • Chunmei Zhang,
  • Yalong Jiao,
  • Anthony O'Mullane and
  • Aijun Du

Beilstein J. Nanotechnol. 2018, 9, 1247–1253, doi:10.3762/bjnano.9.116

Graphical Abstract
  • The potential applications of two-dimensional (2D) materials are one of the key research areas for many researchers since graphene was isolated and characterized in 2004 [1]. The number of applications is vast including photovoltaics, nanoelectronics, Dirac materials and solar fuels through water
PDF
Album
Supp Info
Full Research Paper
Published 19 Apr 2018

Dye-sensitized Pt@TiO2 core–shell nanostructures for the efficient photocatalytic generation of hydrogen

  • Jun Fang,
  • Lisha Yin,
  • Shaowen Cao,
  • Yusen Liao and
  • Can Xue

Beilstein J. Nanotechnol. 2014, 5, 360–364, doi:10.3762/bjnano.5.41

Graphical Abstract
  • Jun Fang Lisha Yin Shaowen Cao Yusen Liao Can Xue Solar Fuels Laboratory, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore 10.3762/bjnano.5.41 Abstract Pt@TiO2 core–shell nanostructures were prepared through a
  • particle bridge. Keywords: charge transfer; dye-sensitization; photocatalysis; photocatalyst; solar fuels; water splitting; Introduction Since Honda and Fujishima reported the effective hydrogen evolution from water splitting by a TiO2 and Pt electrode in a photoelectrochemical cell in the early 1970s [1
  • ). Supporting Information Supporting Information File 16: Additional experimental data. Acknowledgements This work was financially supported by NTU seed funding for Solar Fuels Laboratory, MOE AcRF-Tier1 RG 44/11, MOE AcRF-Tier2 (MOE2012-T2-2-041, ARC 5/13), and CRP program (NRF-CRP5-2009-04) from the
PDF
Album
Supp Info
Full Research Paper
Published 26 Mar 2014
Other Beilstein-Institut Open Science Activities